Des conjectures plausibles… mais fausses !


Jacques Bair

On pense souvent que les seules erreurs commises par de bons mathématiciens sont des fautes insignifiantes, dues à une certaine distraction (de type calculs faciles). Pourtant, certains ont émis des conjectures mathématiques qui se sont révélées fausses, et parfois de manière spectaculaire.

Une caractéristique de l'homme consiste en sa faculté de raisonner, c'est-à-dire essentiellement de tirer d'une manière convaincante une conclusion en partant d'hypothèses. D'après George Pólya, on peut en somme distinguer deux types de raisonnements en fonction de la nature de leur conclusion :

• les raisonnements plausibles, qui fournissent une conclusion incertaine, mais plausible (« plus ou moins probable ») ;

• les raisonnements démonstratifs, qui livrent une conclusion certaine (dans un cadre bien fixé).

 

Lorsqu'elles sont achevées, les mathématiques n'utilisent que des raisonnements démonstratifs, ce qui explique pourquoi elles sont souvent présentées comme étant la science de référence en ce qui concerne la rigueur et la vérité. Mais, au cours de leur construction et de leur élaboration, elles sont semblables à toute autre connaissance humaine au même stade de développement : un énoncé mathématique doit être « deviné » avant d'être (si possible) démontré et n'est donc au départ qu'une conjecture et pas (encore) un théorème.

 

Ainsi, quand il travaille à une nouvelle théorie, un mathématicien se comporte comme n'importe quel scientifique : il procède de manière inductive et s'efforce de trouver un énoncé général en examinant attentivement quelques cas particuliers. Or, toute induction aboutit à une conclusion non pas certaine, mais seulement plausible. ... Lire la suite